Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Res Vet Sci ; 171: 105206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493661

RESUMO

Adult brachycera biting flies can significantly impact livestock through both direct effects (reduction of food intake, disturbance, painful bites, and blood loss) and indirect effects (pathogen transmission), leading to substantial economic losses and production damage. This study aimed to assess the presence of blood-sucking flies in six mixed-animal farm environments on the island of Mallorca (Balearic Islands, Spain) by employing multiple trapping methods. Additionally, distribution maps of brachycera biting fly species recorded in Spain were created, based on data extracted thorough review of scientific literature and citizen digital databases. Investigation of several pathogens, including equine infectious anemia virus (EIAV), Anaplasmataceae bacteria, and piroplasm protozoa, was carried out using different PCR targets (18S rRNA, 16S rRNA, groESL, and tat genes). Citizen science databases and literature review corroborated the consistent distribution trend for two Stomoxyinae species, underscoring the importance of citizen collaboration as a complement to traditional entomological surveillance. Our study confirmed the presence of two biting Stomoxyinae species: the prevalent stable fly Stomoxys calcitrans across all sampled farms, and the horn fly Haematobia irritans, which turned out to be less abundant. DNA barcoding techniques validated the identification of the two species. Neither EIAV nor bacterial/protozoan pathogens were detected using the selected PCR targets in either fly species. However, Wolbachia pipientis (clustered in the supergroup A together with the only sequence of W. pipientis from the USA) was identified through PCR targeting 16S rRNA, groESL and wsp genes in all pools of H. irritans (n = 13) collected from two of the examined farms. This study represents the first attempt to investigate pathogens in Stomoxyinae biting flies in Spain. The discovery of the endosymbiotic Wolbachia organism in H. irritans represents the first record in Spain and the second from Europe. This finding holds significant implications for future research on the applications of this bacterium in biocontrol programs.


Assuntos
Muscidae , Wolbachia , Animais , Wolbachia/genética , Espanha , RNA Ribossômico 16S/genética , Muscidae/genética , Muscidae/microbiologia , Muscidae/parasitologia , Bactérias/genética
2.
Infect Genet Evol ; 112: 105455, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37263337

RESUMO

Stomoxys flies (Diptera: Muscidae) are hematophagous ectoparasites of medical and veterinary importance. In this study, three Stomoxys species, i.e. S. bengalensis, S. calcitrans, and S. sitiens, were collected from three provinces in Central Thailand with the aim of estimating the genetic divergence between species, for species identification, as well as within species, for a genetic diversity study based on the cytochrome c oxidase subunit I (COI) gene. Our results showed that the average intraspecific genetic divergences of Stomoxys flies ranged from 0.11% in S. sitiens to 0.98% in S. calcitrans, whereas the average interspecific genetic divergences ranged from 5.24% between S. sitiens and S. bengalensis to 6.69% between S. calcitrans and S. bengalensis. In addition, there was no overlap between the intraspecific and interspecific genetic divergences. The COI sequence analysis revealed a high haplotype diversity and low nucleotide diversity, reflecting a rapid population expansion after past bottlenecks. Moreover, there was no significant difference (P > 0.05) in the pairwise population differentiation (Fst) among Stomoxys flies in Central Thailand, because of the lack of natural barriers, thus allowing genetic exchange between them. The monitoring of the haplotype network revealed that two lineages of S. calcitrans in Central Thailand were distributed in all study areas, including the Nakhon Pathom, Pathum Thani, and Saraburi Provinces. These findings may improve our understanding of the genetic patterns of these three Stomoxys flies, as well as the underlying biological mechanisms, which is knowledge that can be used for further effective control of these flies.


Assuntos
Muscidae , Muscidae/genética , Animais , Variação Genética , Tailândia , Deriva Genética , Masculino , Feminino , Filogenia , Funções Verossimilhança
3.
Acta Trop ; 242: 106910, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963598

RESUMO

Hydrotaea spinigera (Stein, 1910) (Diptera: Muscidae) is a forensically important sarcosaprophagous species widely distributed throughout the Oriental and Australasian regions. At the advanced decomposition stage or the skeletonize stage, the immature stages of H. spinigera, especially the pupae, can still be found in large quantities and could be used as important indicators to estimate the minimum postmortem interval (PMImin). However, there have been no studies on the intra-puparial period of this species. Herein, we studied morphological and differential gene expression changes during the intra-puparial development of H. spinigera, aiming to accurately estimate the intra-puparial age of H. spinigera. The intra-puparial morphological changes of H. spinigera were observed at seven constant temperatures ranging from 16 °C to 34 °C and divided into 12 sub-stages. Structures that could be used to estimate the intra-puparial age, such as compound eyes, mouthparts, antennae, thorax, legs, wings, and abdomen, were observed in detail, and the developmental process of each structure was divided into 5 to 10 stages. The time range of each sub-stage, or when a structure appeared, was recorded. For the gene expression section, the most suitable reference genes were screened by geNorm, NormFinder, BestKeeper, and ΔCt methods. Based on the selected reference genes, real-time quantitative PCR (RT qPCR) was used to detect the expression changes of the white and hsp90 genes with developmental time at 19 °C, 25 °C, and 31 °C. Results showed that the trend of hsp90 gene expression under different temperatures was not consistent, while white genes exhibited regular changes during development, and could thus be used for age estimation of H. spinigera. This study provides an important basis for forensic entomology to use morphological and differential gene expression for estimating the age of H. spinigera during the intra-puparial period. Moreover, the combination of the two methods can produce a more accurate minimum postmortem interval (PMImin) estimate compared to when each method is used separately.


Assuntos
Dípteros , Entomologia Forense , Muscidae , Animais , Muscidae/genética , Mudanças Depois da Morte , Temperatura , Pupa/genética , Expressão Gênica , Larva
4.
Med Vet Entomol ; 37(2): 371-380, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36734022

RESUMO

The bloodsucking fly, Stomoxys calcitrans (Diptera: Muscidae), is a cosmopolitan pest that transmits potential pathogens mechanically. We conduct phylogeographic analyses of S. calcitrans to resolve its global population genetic structure for establishing baseline of molecular studies. Results from mitochondrial gene suggested that the major divergence of S. calcitrans predominantly occurred 0.32-0.47 million years ago (Mya) and the subsequent diversifications took place during 0.13-0.27 Mya. The Ethiopian region was deduced as the most likely origin of S. calcitrans and the Nearctic lineages were considered to have originated from Oriental or Palaearctic regions. Our results further revealed that each biogeographic region of S. calcitrans likely maintains its genetic specialty, and yet, those non-monophyletic relationships were possibly caused by ancestral retention, dispersal with mammals, long-distance migration, and the international livestock industries. Moreover, the three highly diverged Ethiopian lineages may be putative cryptic species that require clarification of their veterinary importance. Unravelling the genetic structure of stable fly and preventing gene flow among biogeographic regions through anthropogenic activities are thus pivotal in livestock industry administration, particularly genetic exchange among differentiated lineages that might lead to the consequence of ecological trait alterations.


Assuntos
Muscidae , Animais , Muscidae/genética , Filogeografia , Estruturas Genéticas , Mamíferos
5.
Parasit Vectors ; 16(1): 4, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604766

RESUMO

BACKGROUND: Trypanosoma evansi infects a large number of wild and domestic animals and causes a spoliative disease known as surra. It is mechanically transmitted, mainly by biting flies of the genera Tabanus and Stomoxys. The detection of T. evansi DNA in the feeding apparatus of Dichelacera alcicornis and Dichelacera januarii from South America is reported, to the best of our knowledge, for the first time. METHODS: Tabanids were collected weekly from February 2018 to February 2019 from two sites. The feeding apparatus was removed and DNA extraction, polymerase chain reaction and sequencing were performed. RESULTS: A 205-base pair fragment of the variant surface protein RoTat 1.2 gene, confirmed by DNA sequencing, was amplified from the feeding apparatus of D. alcicornis and D. januarii. CONCLUSIONS: This is, to the best of our knowledge, the first record of T. evansi DNA in South American tabanids.


Assuntos
Dípteros , Muscidae , Trypanosoma , Tripanossomíase , Animais , Dípteros/genética , Trypanosoma/genética , Tripanossomíase/veterinária , Tripanossomíase/diagnóstico , Muscidae/genética , América do Sul , DNA
6.
Sci Rep ; 12(1): 18135, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307501

RESUMO

The objective of the present study was to characterize a herd of 72 ½ Angus × ½ Nellore heifers, identify the resistant, resilient and susceptible animals to parasites, relate the overall DNA methylation of these animals with the degree of parasitism, evaluated by the egg count per gram of feces (EPG), Haematobia irritans count (horn fly) and Rhipicephalus microplus count (bovine tick). The experiment was carried out in a completely randomized design, containing 72 treatments, with each animal considered a treatment, and 11 repetitions, with each collection within a year considered a repetition. The data obtained from the counts of the evaluated parasites were subjected to statistical analysis using the SISVAR program, to classify heifers according to the degree of parasitism in low (resistant), intermediary (resilient) and high (susceptible) parasite load for infection by nematodes, infestation by ticks and flies. Addition the animals in these three groups, by hierarchical grouping using the GENES program, heifers were classified as to the degree of parasitism by the three parasites along with the DNA methylation content of the animals in each group. A negative relationship was observed between resistance and methylated DNA content in both classifications, with the resistant, resilient, and susceptible animals showing the highest, intermediate, and lowest methylated DNA quantifications, respectively. Thus, the methodologies used herein enabled the classification of 72 heifers according to the degree of collective infection by gastrointestinal nematodes and infestation by ticks and horn flies, thereby establishing a link between the degree of parasitic resistance in cattle and the global methylated DNA quantification.


Assuntos
Doenças dos Bovinos , Muscidae , Rhipicephalus , Animais , Bovinos , Feminino , Doenças dos Bovinos/genética , Doenças dos Bovinos/parasitologia , Suscetibilidade a Doenças/veterinária , Genômica , Metilação , Muscidae/genética , Rhipicephalus/genética
7.
Acta Trop ; 235: 106647, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35961407

RESUMO

Bovine hemoplasmosis is a disease in buffaloes and cattle caused by hemotropic mycoplasmas or hemoplasmas. Only two bovine hemoplasma species, Mycoplasma wenyonii and Candidatus Mycoplasma haemobos, have been described in several countries. Hemoplasmas induce acute hemolytic anemia or chronic infection, leading to production loss. Bovine hemoplasma DNA was also detected in blood-sucking arthropods, suggesting vector transmission in farms. To date, no studies of the molecular detection of bovine hemoplasmas in Thai buffaloes and arthropod vectors have been reported. This study aimed to study the 1-year diversity of hematophagous flies in a buffalo farm located in Chachoengsao province, Thailand, and to investigate the molecular occurrence of bovine hemoplasmas in those flies using a polymerase chain reaction (PCR) assay and sequence analyses. A total of 1,488 mosquitoes, 867 stable flies, and 312 tabanid flies were collected during this study. The most abundant mosquitoes, stable flies, and tabanid flies were Culex tritaeniorhynchus, Stomoxys calcitrans, and Tabanus megalops, respectively. A total of 249 genomic DNA samples of flies were tested using a PCR assay based on the 16S rRNA gene; 23.69% (59/249) of the insect samples were positive in this assay. Positive samples (n = 8) were subjected to bidirectional sequencing. The BLAST results showed that only three samples from Stomoxys calcitrans and two samples from Tabanus megalops showed 99.90% and 99.17% similarities to the M. wenyonii isolate B003 (MG948626/Water buffalo/Cuba) and the M. wenyonii isolate C124 (MG948625/Cattle/Cuba), respectively. This molecular occurrence of bovine hemoplasmas in blood-sucking flies suggested that those flies are the mechanical vectors for bovine hemoplasmas in Thailand. Based on the phylogenetic analysis of the 16S rRNA gene, the sequences of M. wenyonii were likely classified into two subgroups (A and B), suggesting closely related bovine hemoplasma species. Finally, the genetic analysis of the 23S rRNA gene from these two subgroups revealed that subgroup A could be M. wenynoii and subgroup B may be a subspecies of M. wenyonii or another putative novel species. However, further investigation should be conducted in buffaloes, cattle, and blood-sucking flies to gain more 16S rRNA and 23 rRNA gene sequences of bovine hemoplasmas.


Assuntos
Doenças dos Bovinos , Muscidae , Infecções por Mycoplasma , Mycoplasma , Animais , Búfalos , Bovinos , Doenças dos Bovinos/epidemiologia , DNA Bacteriano/genética , Fazendas , Mosquitos Vetores , Muscidae/genética , Infecções por Mycoplasma/epidemiologia , Infecções por Mycoplasma/veterinária , Filogenia , RNA Ribossômico 16S/genética , Tailândia
8.
Vet Parasitol ; 304: 109699, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35390642

RESUMO

The horn fly, Haematobia irritans, is a blood-feeding parasitic fly with a global distribution that includes Europe, Africa, Asia, and the Americas. The fly has a major detrimental economic impact upon cattle production, with losses estimated at over $800 million annually in the United States and $2.5 billion in Brazil alone. Insecticide resistance in specific horn fly populations has been a problem for many years and there are several mechanisms whereby resistance develops. Little is known about the complement of metabolic enzymes encoded by the horn fly's genome that might provide the fly with detoxification or sequestration pathways to survive insecticide treatments. The cytochrome P450, glutathione S-transferase, and esterase enzyme families contain members that are capable of sequestering and/or detoxifying xenobiotic molecules such as insecticides. We sought to develop a comprehensive dataset of metabolic enzyme-encoding transcript sequences from the adult horn fly, as this is the life stage whose actions directly impose the economic costs to cattle producers. We used an Illumina paired-end read RNA-Seq approach to determine the adult horn fly transcriptomes from laboratory and field populations of horn flies with varying levels of pesticide resistance, including untreated and pyrethroid-treated newly eclosed adult flies. We followed with bioinformatic analyses to discern sequences putatively encoding cytochrome P450, esterase, and GST enzymes. We utilized read-mapping of RNA-Seq data and quantitative real-time polymerase chain reaction (qRT-PCR) to examine gene expression levels of specific P450 transcripts in several fly populations with varying degrees of pesticide resistance.


Assuntos
Inseticidas , Muscidae , Animais , Bovinos , Sistema Enzimático do Citocromo P-450/genética , Esterases/genética , Glutationa , Humanos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Muscidae/genética , Transcriptoma , Transferases/genética
9.
Insect Biochem Mol Biol ; 141: 103707, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979251

RESUMO

The role of odorant- and pheromone-binding proteins (OBPs) in olfactory function is not fully understood. We found an OBP sequence from the stable fly, Stomoxys calcitrans, ScalOBP60, that has a 25 amino acid N-terminal extension with a high content of histidine and acidic amino acids, suggesting a possible metal binding activity. A search of public databases revealed a large number of other fly OBPs with histidine-rich N-terminal extensions, as well as beetle, wasp and ant OBPs with histidine-rich C-terminal extensions. We recombinantly expressed ScalOBP60, as well as a truncated sequence which lacks the histidine-rich N-terminal region, tScalOBP60. Using fluorescence quenching and electrospray quadrupole time-of-flight mass spectrometry (ESI-QTOF), we detected two different types of metal-binding sites. Divalent copper, nickel and zinc bind to the N-terminal histidine-rich region, and divalent copper binds to an internal sequence position. Comparison of the ESI-QTOF spectra of ScalOBP60 and tScalOBP60 showed that the histidine-rich sequence is structurally disordered, but it becomes more ordered in the presence of divalent metal. When copper is bound to the internal site, binding of a hydrophobic ligand to ScalOBP60 is inhibited. The internal and N-terminal metal sites interact allosterically, possibly through a conformational equilibrium, suggesting a mechanism for metal regulation of ligand binding to ScalOBP60. Based on our studies of ScalOBP60, we propose several possible olfactory and non-olfactory functions for this OBP.


Assuntos
Proteínas de Insetos/genética , Muscidae/genética , Receptores Odorantes/genética , Animais , Sítios de Ligação , Histidina/química , Histidina/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Muscidae/metabolismo , Receptores Odorantes/química , Receptores Odorantes/metabolismo
10.
G3 (Bethesda) ; 12(2)2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34878103

RESUMO

The invasive avian vampire fly (Philornis downsi, Diptera: Muscidae) is considered one of the greatest threats to the endemic avifauna of the Galápagos Islands. The fly larvae parasitize nearly every passerine species, including Darwin's finches. Most P. downsi research to date has focused on the effects of the fly on avian host fitness and mitigation methods. A lag in research related to the genetics of this invasion demonstrates, in part, the need to develop full-scale genomic resources with which to address further questions within this system. In this study, an adult female P. downsi was sequenced to generate a high-quality genome assembly. We examined various features of the genome (e.g., coding regions and noncoding transposable elements) and carried out comparative genomics analysis against other dipteran genomes. We identified lists of gene families that are significantly expanding or contracting in P. downsi that are related to insecticide resistance, detoxification, and counter defense against host immune responses. The P. downsi genome assembly provides an important resource for studying the molecular basis of successful invasion in the Galápagos and the dynamics of its population across multiple islands. The findings of significantly changing gene families associated with insecticide resistance and immune responses highlight the need for further investigations into the role of different gene families in aiding the fly's successful invasion. Furthermore, this genomic resource provides a necessary tool to better inform future research studies and mitigation strategies aimed at minimizing the fly's impact on Galápagos birds.


Assuntos
Tentilhões , Muscidae , Parasitos , Animais , Equador/epidemiologia , Feminino , Tentilhões/genética , Tentilhões/parasitologia , Humanos , Larva , Muscidae/genética
11.
J Dairy Sci ; 104(12): 12724-12740, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34482984

RESUMO

Horn flies (Haematobia irritans [L.]) contribute to major economic losses of pastured cattle operations, particularly in organic herds because of limitations on control methods that can be used. The objectives of this research were to determine if resistance to horn flies is a heritable trait in organic Holstein cattle, determine associations with yield traits, and to detect genomic regions associated with fly infestation. Observations of fly load were recorded from 1,667 pastured Holstein cows, of which 640 were genotyped, on 13 organic dairies across the United States. Fly load score was determined using a 0 to 4 scale based on fly coverage from chine to loin on one side of the body, with 0 indicating few to no flies and 4 indicating high infestation. The scoring system was validated by counting flies from photographs taken at the time of scoring from 252 cows. To mitigate the effect of our data structure on potential selection bias effects on genetic parameter estimates, survival to subsequent lactations of scored animals and herd-mates that had been culled before the trial was accounted for as the trait stayability. Genetic parameters were estimated using single-step genomic analysis with 3-trait mixed models that included fly score, stayability, and a third phenotype. Model effects differed by variable, but fixed effects generally included a contemporary group, scorer, parity, and stage of lactation; random effects included animal, permanent environment, and residual error. A genome-wide association study was performed by decomposing estimated breeding values into marker effects to detect significant genomic regions associated with fly score. The rank correlation between the subjective fly score and the objective count was 0.79. The average heritability of fly score (± standard error) estimated across multiple models was 0.25 ± 0.04 when a known Holstein maternal grandsire was required and 0.19 ± 0.03 when only a known Holstein sire was required. Genetic correlation estimates with yield traits were moderately positive, but a greater fly load was associated with reduced yield after accounting for genetic merit. Lower fly loads were associated with white coat coloration; a significant genomic region on Bos taurus autosome 6 was identified that contains the gene KIT, which was the most plausible candidate gene for fly resistance because of its role in coat pattern and coloration. The magnitude of heritable variation in fly infestation is similar to other traits included in selection programs, suggesting that producers can select for resistance to horn flies.


Assuntos
Doenças dos Bovinos , Bovinos , Muscidae , Animais , Bovinos/genética , Doenças dos Bovinos/genética , Doenças dos Bovinos/parasitologia , Resistência à Doença , Feminino , Estudo de Associação Genômica Ampla/veterinária , Genômica , Lactação , Muscidae/genética , Fenótipo , Gravidez
12.
Parasit Vectors ; 14(1): 442, 2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34479607

RESUMO

BACKGROUND: The horn fly, Haematobia irritans irritans, causes significant production losses to the cattle industry. Horn fly control relies on insecticides; however, alternative control methods such as vaccines are needed due to the fly's capacity to quickly develop resistance to insecticides, and the pressure for eco-friendly options. METHODS: We used a reverse vaccinology approach comprising three vaccine prediction and 11 annotation tools to evaluate and rank 79,542 translated open reading frames (ORFs) from the horn fly's transcriptome, and selected 10 transcript ORFs as vaccine candidates for expression in Pichia pastoris. The expression of the 10 selected transcripts and the proteins that they encoded were investigated in adult flies by reverse transcription polymerase chain reaction (RT-PCR) and mass spectrometry, respectively. Then, we evaluated the immunogenicity of a vaccine candidate in an immunization trial and the antigen's effects on horn fly mortality and fecundity in an in vitro feeding assay. RESULTS: Six of the ten vaccine candidate antigens were successfully expressed in P. pastoris. RT-PCR confirmed the expression of all six ORFs in adult fly RNA. One of the vaccine candidate antigens, BI-HS009, was expressed in sufficient quantity for immunogenicity and efficacy trials. The IgG titers of animals vaccinated with BI-HS009 plus adjuvant were significantly higher than those of animals vaccinated with buffer plus adjuvant only from days 42 to 112, with a peak on day 56. Progeny of horn flies feeding upon blood from animals vaccinated with BI-HS009 plus adjuvant collected on day 56 had 63% lower pupariation rate and 57% lower adult emergence than the control group (ANOVA: F (1, 6) = 8.221, P = 0.028 and F (1, 6) = 8.299, P = 0.028, respectively). CONCLUSIONS: The reverse vaccinology approach streamlined the discovery process by prioritizing possible vaccine antigen candidates. Through a thoughtful process of selection and in vivo and in vitro evaluations, we were able to identify a promising antigen for an anti-horn fly vaccine.


Assuntos
Doenças dos Bovinos/prevenção & controle , Imunogenicidade da Vacina , Muscidae/genética , Muscidae/imunologia , Vacinas/imunologia , Vacinologia/métodos , Animais , Antígenos/genética , Antígenos/imunologia , Bovinos , Feminino , Masculino , Reação em Cadeia da Polimerase/métodos , Transcrição Reversa
13.
Med Vet Entomol ; 35(4): 567-579, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34129691

RESUMO

Philornis Meinert 1890 (Diptera: Muscidae) is a genus of flies that parasitize birds in the Neotropical region. The characteristics of the host-parasite interactions and its consequences may depend on the Philornis species involved, and thus precise identification of these parasites is crucial for the interpretation of ecological and epidemiological studies. However, morphological identification of Argentine Philornis species is elusive while molecular evidence points towards the existence of a complex of cryptic species or lineages undergoing a speciation process, which were named the 'Philornis torquans complex'. Herein the authors extended the current knowledge on the systematics and biogeography of parasitic Philornis flies from Argentina, analysing samples collected in several ecoregions, including the Atlantic Forest, Iberá Wetlands, Open Fields and Grasslands, Espinal, Pampa, Dry Chaco, Humid Chaco, Delta and Paraná River Islands, Monte of Plains and Plateaus. The results of the present study strengthen the evidence on previously described Philornis genotypes using four genetic markers (ITS2, COI, ND6, 12S rRNA). The authors report new patterns of occurrence and describe the presence of a novel genotype of subcutaneous Philornis. In addition, the present study unveils ecological niche differences among genotypes of the Philornis torquans complex in southern South America.


Assuntos
Muscidae , Parasitos , Animais , Argentina/epidemiologia , Variação Genética , Larva , Muscidae/genética
14.
BMC Biol ; 19(1): 41, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33750380

RESUMO

BACKGROUND: The stable fly, Stomoxys calcitrans, is a major blood-feeding pest of livestock that has near worldwide distribution, causing an annual cost of over $2 billion for control and product loss in the USA alone. Control of these flies has been limited to increased sanitary management practices and insecticide application for suppressing larval stages. Few genetic and molecular resources are available to help in developing novel methods for controlling stable flies. RESULTS: This study examines stable fly biology by utilizing a combination of high-quality genome sequencing and RNA-Seq analyses targeting multiple developmental stages and tissues. In conjunction, 1600 genes were manually curated to characterize genetic features related to stable fly reproduction, vector host interactions, host-microbe dynamics, and putative targets for control. Most notable was characterization of genes associated with reproduction and identification of expanded gene families with functional associations to vision, chemosensation, immunity, and metabolic detoxification pathways. CONCLUSIONS: The combined sequencing, assembly, and curation of the male stable fly genome followed by RNA-Seq and downstream analyses provide insights necessary to understand the biology of this important pest. These resources and new data will provide the groundwork for expanding the tools available to control stable fly infestations. The close relationship of Stomoxys to other blood-feeding (horn flies and Glossina) and non-blood-feeding flies (house flies, medflies, Drosophila) will facilitate understanding of the evolutionary processes associated with development of blood feeding among the Cyclorrhapha.


Assuntos
Genoma de Inseto , Interações Hospedeiro-Parasita/genética , Controle de Insetos , Muscidae/genética , Animais , Reprodução/genética
15.
Med Vet Entomol ; 34(3): 374-378, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32232864

RESUMO

In horn flies, Haematobia irritans irritans (Diptera: Muscidae) (Linnaeus, 1758), target site resistance to pyrethroids can be diagnosed by an allele-specific PCR that genotypes individual flies at both the super-kdr (skdr) and the knock down resistance (kdr) associated loci. When this technique uses genomic DNA as template, modifications, such as alternative RNA splicing and RNA editing are not specifically detected. Alternative splicing at the skdr locus has been reported in Dipterans; thus, the genomic DNA-based allele-specific PCR may not accurately reflect the frequency of the skdr mutation in horn fly field populations. To investigate if alternative splicing occurs at the skdr locus of horn flies, genomic DNA and cDNA sequences isolated from two wild populations and two laboratory-reared colonies with varying degrees of pyrethroid resistance were compared. There was no indication of alternative splicing at the super-kdr locus neither in the wild populations nor in the laboratory-reared colonies.


Assuntos
Processamento Alternativo , Proteínas de Insetos/genética , Resistência a Inseticidas/genética , Muscidae/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Muscidae/metabolismo
16.
G3 (Bethesda) ; 10(4): 1341-1352, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32051221

RESUMO

Sex chromosomes and sex determining genes can evolve fast, with the sex-linked chromosomes often differing between closely related species. Population genetics theory has been developed and tested to explain the rapid evolution of sex chromosomes and sex determination. However, we do not know why the sex chromosomes are divergent in some taxa and conserved in others. Addressing this question requires comparing closely related taxa with conserved and divergent sex chromosomes to identify biological features that could explain these differences. Cytological karyotypes suggest that muscid flies (e.g., house fly) and blow flies are such a taxonomic pair. The sex chromosomes appear to differ across muscid species, whereas they are conserved across blow flies. Despite the cytological evidence, we do not know the extent to which muscid sex chromosomes are independently derived along different evolutionary lineages. To address that question, we used genomic and transcriptomic sequence data to identify young sex chromosomes in two closely related muscid species, horn fly (Haematobia irritans) and stable fly (Stomoxys calcitrans). We provide evidence that the nascent sex chromosomes of horn fly and stable fly were derived independently from each other and from the young sex chromosomes of the closely related house fly (Musca domestica). We present three different scenarios that could have given rise to the sex chromosomes of horn fly and stable fly, and we describe how the scenarios could be distinguished. Distinguishing between these scenarios in future work could identify features of muscid genomes that promote sex chromosome divergence.


Assuntos
Moscas Domésticas , Muscidae , Animais , Genoma , Muscidae/genética , Cromossomos Sexuais/genética
17.
J Evol Biol ; 33(4): 524-533, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31961983

RESUMO

Fecundity selection is a critical component of fitness and a major driver of adaptive evolution. Trade-offs between parasite mortality and host resources are likely to impose a selection pressure on parasite fecundity, but this is little studied in natural systems. The 'fecundity advantage hypothesis' predicts female-biased sexual size dimorphism whereby larger females produce more offspring. Parasitic insects are useful for exploring the interplay between host resource availability and parasite fecundity, because female body size is a reliable proxy for fecundity in insects. Here we explore temporal changes in body size in the myiasis-causing parasite Philornis downsi (Diptera: Muscidae) on the Galápagos Islands under conditions of earlier in-nest host mortality. We aim to investigate the effects of decreasing host resources on parasite body size and fecundity. Across a 12-year period, we observed a mean of c. 17% P. downsi mortality in host nests with 55 ± 6.2% host mortality and a trend of c. 66% higher host mortality throughout the study period. Using specimens from 116 Darwin's finch nests (Passeriformes: Thraupidae) and 114 traps, we found that over time, P. downsi pupae mass decreased by c. 32%, and male (c. 6%) and female adult size (c. 11%) decreased. Notably, females had c. 26% smaller abdomens in later years, and female abdomen size was correlated with number of eggs. Our findings imply natural selection for faster P. downsi pupation and consequently smaller body size and lower parasite fecundity in this newly evolving host-parasite system.


Assuntos
Fertilidade/genética , Tentilhões/parasitologia , Interações Hospedeiro-Parasita , Muscidae/genética , Seleção Genética , Animais , Tamanho Corporal , Feminino , Masculino
18.
BMC Genomics ; 20(1): 616, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31357943

RESUMO

BACKGROUND: The horn fly (Haematobia irritans) is an obligate blood feeder that causes considerable economic losses in livestock industries worldwide. The control of this cattle pest is mainly based on insecticides; unfortunately, in many regions, horn flies have developed resistance. Vaccines or biological control have been proposed as alternative control methods, but the available information about the biology or physiology of this parasite is rather scarce. RESULTS: We present a comprehensive description of the salivary and midgut transcriptomes of the horn fly (Haematobia irritans), using deep sequencing achieved by the Illumina protocol, as well as exploring the virome of this fly. Comparison of the two transcriptomes allow for identification of uniquely salivary or uniquely midgut transcripts, as identified by statistically differential transcript expression at a level of 16 x or more. In addition, we provide genomic highlights and phylogenetic insights of Haematobia irritans Nora virus and present evidence of a novel densovirus, both associated to midgut libraries of H. irritans. CONCLUSIONS: We provide a catalog of protein sequences associated with the salivary glands and midgut of the horn fly that will be useful for vaccine design. Additionally, we discover two midgut-associated viruses that infect these flies in nature. Future studies should address the prevalence, biological effects and life cycles of these viruses, which could eventually lead to translational work oriented to the control of this economically important cattle pest.


Assuntos
Perfilação da Expressão Gênica , Mucosa Intestinal/metabolismo , Muscidae/genética , Muscidae/virologia , Glândulas Salivares/metabolismo , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Insetos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
19.
J Med Entomol ; 56(4): 1145-1149, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-30768670

RESUMO

Anecdotal evidence of pyrethroid insecticide product failure for the control of stable fly [Stomoxys calcitrans (L.)] populations in the United States and worldwide prompted us to evaluate the frequency of knockdown resistance (kdr)-type polymorphisms within the voltage-sensitive sodium channel (Vssc) gene of field collected specimens from the United States, France, Costa Rica, and Thailand. The kdr-his allele (L1014H), associated with permethrin resistance, was detected in stable flies from the 10 states sampled in the United States, as well as from Costa Rica and France (Toulouse). Field collections of stable flies from California (Modesto) and New York (Cliffton Springs) exhibited reduced susceptibility upon exposure to a diagnostic permethrin concentration of 10× LC99, but survival did not appear to strictly associate with frequency of the kdr-his allele. This suggests that there are additional resistance mechanisms contributing to the phenotype in these states. The kdr allele (L1014F) was detected for the first time in stable flies originating in France and Thailand, and an improved, DNA-based diagnostic assay was developed and validated for use in future screens for kdr and kdr-his allele frequencies from field collections. The absence of kdr in United States and Costa Rica populations suggests that the allele is currently restricted to Europe and Asia.


Assuntos
Resistência a Inseticidas/genética , Muscidae/genética , Canais de Sódio Disparados por Voltagem/genética , Alelos , Animais , Costa Rica , França , Análise de Sequência de DNA , Tailândia , Estados Unidos
20.
Int J Biol Macromol ; 127: 357-364, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30658142

RESUMO

Muscidae, commonly known as house flies and their close relatives, is one of the dipteran insects of recognized medical, veterinary, and ecological importance. Mitochondrial genomes (Mitogenomes) have been widely used for exploring phylogenetic analysis and taxonomic diagnosis due to the difficulty in distinguishing them morphologically. In this study, our complete mitogenomes of muscid flies were sequenced and aligned, which ranged from 15,117 bp (Synthesiomyia nudiseta) to 16,089 bp (Musca sorbens) in length, and contained a typical circular molecule comprising 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs) and a non-coding control region. The order and orientation of genes were identical with that from the ancestral insects. The phylogenetic analysis based on the mitochondrial genes indicated that the subfamily relationships within Muscidae were reconstructed as (Mydaeinae (Muscinae (Reinwardtiinae + Azeliinae))). Similar tree topologies were recovered from both Maximum Likelihood (ML) and Bayesian Inference (BI) analysis. Furthermore, we compared the phylogenetic analyses that were constructed using internal transcribed spacer 2 (ITS2), elongation factor-1α (EF-1α), 13 PCGs and 13 PCGs + ITS2 + EF-1α, respectively. Combined analysis of nuclear gene partitions improved support and resolution for resulting topologies but the positions of branches were obviously inconsistent due to limited species. More mitogenomes should be sequenced representing various taxonomic levels, especially close related species, which will enhance our understanding of phylogenetic relationships among muscids.


Assuntos
Genoma Mitocondrial , Proteínas de Insetos/genética , Proteínas Mitocondriais/genética , Muscidae/genética , RNA Mitocondrial/genética , RNA de Transferência/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA